Items related to Deep Neural Evolution: Deep Learning with Evolutionary...

Deep Neural Evolution: Deep Learning with Evolutionary Computation (Natural Computing Series) - Softcover

 
9789811536878: Deep Neural Evolution: Deep Learning with Evolutionary Computation (Natural Computing Series)

Synopsis

This book delivers the state of the art in deep learning (DL) methods hybridized with evolutionary computation (EC). Over the last decade, DL has dramatically reformed many domains: computer vision, speech recognition, healthcare, and automatic game playing, to mention only a few. All DL models, using different architectures and algorithms, utilize multiple processing layers for extracting a hierarchy of abstractions of data. Their remarkable successes notwithstanding, these powerful models are facing many challenges, and this book presents the collaborative efforts by researchers in EC to solve some of the problems in DL.

EC comprises optimization techniques that are useful when problems are complex or poorly understood, or insufficient information about the problem domain is available. This family of algorithms has proven effective in solving problems with challenging characteristics such as non-convexity, non-linearity, noise, and irregularity, which dampen the performance of most classic optimization schemes. Furthermore, EC has been extensively and successfully applied in artificial neural network (ANN) research —from parameter estimation to structure optimization. Consequently, EC researchers are enthusiastic about applying their arsenal for the design and optimization of deep neural networks (DNN).

This book brings together the recent progress in DL research where the focus is particularly on three sub-domains that integrate EC with DL: (1) EC for hyper-parameter optimization in DNN; (2) EC for DNN architecture design; and (3) Deep neuroevolution. The book also presents interesting applications of DL with EC in real-world problems, e.g., malware classification and object detection. Additionally, it covers recent applications of EC in DL, e.g. generative adversarial networks (GAN) training and adversarial attacks. The book aims to prompt and facilitate the research in DL with EC both in theory and in practice.

"synopsis" may belong to another edition of this title.

About the Author

Hitoshi Iba received his Ph.D. degree from The University of Tokyo, Japan, in 1990. From 1990 to 1998, he was with the Electro Technical Laboratory in Ibaraki, Japan. Since 1998, he has been with The University of Tokyo, where he is currently a professor in the Graduate School of Information Science and Technology. His research interests include evolutionary computation, artificial life, artificial intelligence, and robotics. He is an associate editor of the Journal of Genetic Programming and Evolvable Machines (GPEM). Dr. Iba is also is an underwater naturalist and experienced Professional Association of Diving Instructors (PADI) divemaster, having completed more than a thousand dives.

Nasimul Noman received his Ph.D. degree from The University of Tokyo, Japan, in 2007. He was a faculty member in the Department of Computer Science and Engineering, University of Dhaka, Bangladesh, from 2002 to 2012. In 2013, he joined the School of Electrical Engineering and Computing at The University of Newcastle, Australia, and currently he is working as a senior lecturer there. His research interests include evolutionary computation, computational biology, bioinformatics, and machine learning.

From the Back Cover

This book delivers the state of the art in deep learning (DL) methods hybridized with evolutionary computation (EC). Over the last decade, DL has dramatically reformed many domains: computer vision, speech recognition, healthcare, and automatic game playing, to mention only a few. All DL models, using different architectures and algorithms, utilize multiple processing layers for extracting a hierarchy of abstractions of data. Their remarkable successes notwithstanding, these powerful models are facing many challenges, and this book presents the collaborative efforts by researchers in EC to solve some of the problems in DL.

EC comprises optimization techniques that are useful when problems are complex or poorly understood, or insufficient information about the problem domain is available. This family of algorithms has proven effective in solving problems with challenging characteristics such as non-convexity, non-linearity, noise, and irregularity, which dampen the performance of most classic optimization schemes. Furthermore, EC has been extensively and successfully applied in artificial neural network (ANN) research ―from parameter estimation to structure optimization. Consequently, EC researchers are enthusiastic about applying their arsenal for the design and optimization of deep neural networks (DNN).

This book brings together the recent progress in DL research where the focus is particularly on three sub-domains that integrate EC with DL: (1) EC for hyper-parameter optimization in DNN; (2) EC for DNN architecture design; and (3) Deep neuroevolution. The book also presents interesting applications of DL with EC in real-world problems, e.g., malware classification and object detection. Additionally, it covers recent applications of EC in DL, e.g. generative adversarial networks (GAN) training and adversarial attacks. The book aims to prompt and facilitate the research in DL with EC both in theory and in practice.

"About this title" may belong to another edition of this title.

Other Popular Editions of the Same Title

9789811536847: Deep Neural Evolution: Deep Learning with Evolutionary Computation (Natural Computing Series)

Featured Edition

ISBN 10:  9811536848 ISBN 13:  9789811536847
Publisher: Springer, 2020
Hardcover

Search results for Deep Neural Evolution: Deep Learning with Evolutionary...

Stock Image

Published by Springer, 2021
ISBN 10: 9811536872 ISBN 13: 9789811536878
New Softcover

Seller: Best Price, Torrance, CA, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. SUPER FAST SHIPPING. Seller Inventory # 9789811536878

Contact seller

Buy New

US$ 218.34
Convert currency
Shipping: US$ 8.98
Within U.S.A.
Destination, rates & speeds

Quantity: 1 available

Add to basket

Stock Image

Published by Springer, 2021
ISBN 10: 9811536872 ISBN 13: 9789811536878
New Softcover

Seller: Ria Christie Collections, Uxbridge, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. In. Seller Inventory # ria9789811536878_new

Contact seller

Buy New

US$ 215.19
Convert currency
Shipping: US$ 16.24
From United Kingdom to U.S.A.
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Stock Image

Published by Springer, 2021
ISBN 10: 9811536872 ISBN 13: 9789811536878
New Softcover

Seller: Lucky's Textbooks, Dallas, TX, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Seller Inventory # ABLIING23Apr0412070088751

Contact seller

Buy New

US$ 230.69
Convert currency
Shipping: US$ 3.99
Within U.S.A.
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Stock Image

Published by Springer, 2021
ISBN 10: 9811536872 ISBN 13: 9789811536878
New Softcover

Seller: California Books, Miami, FL, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Seller Inventory # I-9789811536878

Contact seller

Buy New

US$ 260.00
Convert currency
Shipping: FREE
Within U.S.A.
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Seller Image

Published by Springer Nature Singapore, 2021
ISBN 10: 9811536872 ISBN 13: 9789811536878
New Softcover
Print on Demand

Seller: moluna, Greven, Germany

Seller rating 4 out of 5 stars 4-star rating, Learn more about seller ratings

Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Presents a compilation of state-of-the-art research in deep learning using evolutionary computationFeatures hyper-parameter optimization, deep neural network architecture design, and deep neuroevolutionFacilitates research both in theory an. Seller Inventory # 467597189

Contact seller

Buy New

US$ 218.65
Convert currency
Shipping: US$ 57.75
From Germany to U.S.A.
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Seller Image

Nasimul Noman
ISBN 10: 9811536872 ISBN 13: 9789811536878
New Taschenbuch
Print on Demand

Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book delivers the state of the art in deep learning (DL) methods hybridized with evolutionary computation (EC). Over the last decade, DL has dramatically reformed many domains: computer vision, speech recognition, healthcare, and automatic game playing, to mention only a few. All DL models, using different architectures and algorithms, utilize multiple processing layers for extracting a hierarchy of abstractions of data. Their remarkable successes notwithstanding, these powerful models are facing many challenges, and this book presents the collaborative efforts by researchers in EC to solve some of the problems in DL.EC comprises optimization techniques that are useful when problems are complex or poorly understood, or insufficient information about the problem domain is available. This family of algorithms has proven effective in solving problems with challenging characteristics such as non-convexity, non-linearity, noise, and irregularity, which dampen the performance of most classic optimization schemes. Furthermore, EC has been extensively and successfully applied in artificial neural network (ANN) research -from parameter estimation to structure optimization. Consequently, EC researchers are enthusiastic about applying their arsenal for the design and optimization of deep neural networks (DNN).This book brings together the recent progress in DL research where the focus is particularly on three sub-domains that integrate EC with DL: (1) EC for hyper-parameter optimization in DNN; (2) EC for DNN architecture design; and (3) Deep neuroevolution. The book also presents interesting applications of DL with EC in real-world problems, e.g., malware classification and object detection. Additionally, it covers recent applications of EC in DL, e.g. generative adversarial networks (GAN) training and adversarial attacks. The book aims to prompt and facilitate the research in DL with EC both in theory and in practice. 452 pp. Englisch. Seller Inventory # 9789811536878

Contact seller

Buy New

US$ 259.84
Convert currency
Shipping: US$ 27.11
From Germany to U.S.A.
Destination, rates & speeds

Quantity: 2 available

Add to basket

Stock Image

Published by Springer, 2021
ISBN 10: 9811536872 ISBN 13: 9789811536878
New Softcover

Seller: Books Puddle, New York, NY, U.S.A.

Seller rating 4 out of 5 stars 4-star rating, Learn more about seller ratings

Condition: New. Seller Inventory # 26384729505

Contact seller

Buy New

US$ 294.26
Convert currency
Shipping: US$ 3.99
Within U.S.A.
Destination, rates & speeds

Quantity: 4 available

Add to basket

Stock Image

Published by Springer, 2021
ISBN 10: 9811536872 ISBN 13: 9789811536878
New Softcover
Print on Demand

Seller: Majestic Books, Hounslow, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Print on Demand. Seller Inventory # 379141758

Contact seller

Buy New

US$ 308.87
Convert currency
Shipping: US$ 8.81
From United Kingdom to U.S.A.
Destination, rates & speeds

Quantity: 4 available

Add to basket

Seller Image

Nasimul Noman
ISBN 10: 9811536872 ISBN 13: 9789811536878
New Taschenbuch

Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. Neuware -This book delivers the state of the art in deep learning (DL) methods hybridized with evolutionary computation (EC). Over the last decade, DL has dramatically reformed many domains: computer vision, speech recognition, healthcare, and automatic game playing, to mention only a few. All DL models, using different architectures and algorithms, utilize multiple processing layers for extracting a hierarchy of abstractions of data. Their remarkable successes notwithstanding, these powerful models are facing many challenges, and this book presents the collaborative efforts by researchers in EC to solve some of the problems in DL.EC comprises optimization techniques that are useful when problems are complex or poorly understood, or insufficient information about the problem domain is available. This family of algorithms has proven effective in solving problems with challenging characteristics such as non-convexity, non-linearity, noise, and irregularity, which dampen the performance of most classic optimization schemes. Furthermore, EC has been extensively and successfully applied in artificial neural network (ANN) research ¿from parameter estimation to structure optimization. Consequently, EC researchers are enthusiastic about applying their arsenal for the design and optimization of deep neural networks (DNN).This book brings together the recent progress in DL research where the focus is particularly on three sub-domains that integrate EC with DL: (1) EC for hyper-parameter optimization in DNN; (2) EC for DNN architecture design; and (3) Deep neuroevolution. The book also presents interesting applications of DL with EC in real-world problems, e.g., malware classification and object detection. Additionally, it covers recent applications of EC in DL, e.g. generative adversarial networks (GAN) training and adversarial attacks. The book aims to prompt and facilitate the research in DL with EC both in theory and in practice.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 452 pp. Englisch. Seller Inventory # 9789811536878

Contact seller

Buy New

US$ 259.84
Convert currency
Shipping: US$ 70.73
From Germany to U.S.A.
Destination, rates & speeds

Quantity: 2 available

Add to basket

Seller Image

Nasimul Noman
ISBN 10: 9811536872 ISBN 13: 9789811536878
New Taschenbuch

Seller: AHA-BUCH GmbH, Einbeck, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book delivers the state of the art in deep learning (DL) methods hybridized with evolutionary computation (EC). Over the last decade, DL has dramatically reformed many domains: computer vision, speech recognition, healthcare, and automatic game playing, to mention only a few. All DL models, using different architectures and algorithms, utilize multiple processing layers for extracting a hierarchy of abstractions of data. Their remarkable successes notwithstanding, these powerful models are facing many challenges, and this book presents the collaborative efforts by researchers in EC to solve some of the problems in DL.EC comprises optimization techniques that are useful when problems are complex or poorly understood, or insufficient information about the problem domain is available. This family of algorithms has proven effective in solving problems with challenging characteristics such as non-convexity, non-linearity, noise, and irregularity, which dampen the performance of most classic optimization schemes. Furthermore, EC has been extensively and successfully applied in artificial neural network (ANN) research -from parameter estimation to structure optimization. Consequently, EC researchers are enthusiastic about applying their arsenal for the design and optimization of deep neural networks (DNN).This book brings together the recent progress in DL research where the focus is particularly on three sub-domains that integrate EC with DL: (1) EC for hyper-parameter optimization in DNN; (2) EC for DNN architecture design; and (3) Deep neuroevolution. The book also presents interesting applications of DL with EC in real-world problems, e.g., malware classification and object detection. Additionally, it covers recent applications of EC in DL, e.g. generative adversarial networks (GAN) training and adversarial attacks. The book aims to prompt and facilitate the research in DL with EC both in theory and in practice. Seller Inventory # 9789811536878

Contact seller

Buy New

US$ 267.49
Convert currency
Shipping: US$ 74.74
From Germany to U.S.A.
Destination, rates & speeds

Quantity: 1 available

Add to basket

There are 3 more copies of this book

View all search results for this book