This book introduces several mathematical models in assembly line balancing based on stochastic programming and develops exact and heuristic methods to solve them. An assembly line system is a manufacturing process in which parts are added in sequence from workstation to workstation until the final assembly is produced. In an assembly line balancing problem, tasks belonging to different product models are allocated to workstations according to their processing times and precedence relationships among tasks. It incorporates two features, uncertain task times, and demand volatility, separately and simultaneously, into the conventional assembly line balancing model. A real-life case study related to the mask production during the COVID-19 pandemic is presented to illustrate the application of the proposed framework and methodology. The book is intended for graduate students who are interested in combinatorial optimizations in manufacturing with uncertain input.
"synopsis" may belong to another edition of this title.
Dr. Yuchen Li received his B.E. degrees in Systems Engineering from Beihang University, Beijing, China, in 2010, and the M.Sc. degree in Operations Research from Columbia University, New York, in 2012, and the Ph.D. degree in Industrial Engineering from Rutgers University, New Brunswick, in 2016. Since Nov. 2016, Dr. Li has been with the School of Economics and Management, Beijing University of Technology.
Dr. Yuchen Li is broadly interested in combinatorial optimization in manufacturing with particular emphasis on assembly line balancing area. His research generally involves the design of the intelligent production systems, applied mathematical modeling of manufacturing and industrial systems, and algorithm development.
This book introduces several mathematical models in assembly line balancing based on stochastic programming and develops exact and heuristic methods to solve them. An assembly line system is a manufacturing process in which parts are added in sequence from workstation to workstation until the final assembly is produced. In an assembly line balancing problem, tasks belonging to different product models are allocated to workstations according to their processing times and precedence relationships among tasks. It incorporates two features, uncertain task times, and demand volatility, separately and simultaneously, into the conventional assembly line balancing model. A real-life case study related to the mask production during the COVID-19 pandemic is presented to illustrate the application of the proposed framework and methodology. The book is intended for graduate students who are interested in combinatorial optimizations in manufacturing with uncertain input.
"About this title" may belong to another edition of this title.
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Apr0412070094517
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9789811942143_new
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book introduces several mathematical models in assemblylinebalancingbased on stochastic programming and develops exact and heuristic methods to solve them.An assembly line system is a manufacturing process in which parts are added in sequence from workstation to workstation until the final assembly is produced. In an assembly line balancing problem, tasks belonging to different product models are allocated to workstations according to their processing times and precedence relationships among tasks. It incorporates two features, uncertain task times, and demand volatility, separately and simultaneously, into the conventional assembly line balancing model.A real-life case study related to the mask production during the COVID-19 pandemic is presented to illustrate the application of the proposed framework and methodology. The book is intended for graduate students who are interested in combinatorial optimizations in manufacturing with uncertain input. 164 pp. Englisch. Seller Inventory # 9789811942143
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. 1st ed. 2022 edition NO-PA16APR2015-KAP. Seller Inventory # 26396346009
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand. Seller Inventory # 401112390
Quantity: 4 available
Seller: Buchpark, Trebbin, Germany
Condition: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher. Seller Inventory # 40310446/1
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND. Seller Inventory # 18396346003
Seller: Revaluation Books, Exeter, United Kingdom
Hardcover. Condition: Brand New. 164 pages. 9.25x6.10x0.44 inches. In Stock. Seller Inventory # x-9811942145
Quantity: 2 available
Seller: preigu, Osnabrück, Germany
Buch. Condition: Neu. Assembly Line Balancing under Uncertain Task Time and Demand Volatility | Yuchen Li | Buch | xii | Englisch | 2022 | Springer | EAN 9789811942143 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. Seller Inventory # 121942743
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Buch. Condition: Neu. Neuware -This book introduces several mathematical models in assembly line balancing based on stochastic programming and develops exact and heuristic methods to solve them. An assembly line system is a manufacturing process in which parts are added in sequence from workstation to workstation until the final assembly is produced. In an assembly line balancing problem, tasks belonging to different product models are allocated to workstations according to their processing times and precedence relationships among tasks. It incorporates two features, uncertain task times, and demand volatility, separately and simultaneously, into the conventional assembly line balancing model. A real-life case study related to the mask production during the COVID-19 pandemic is presented to illustrate the application of the proposed framework and methodology. The book is intended for graduate students who are interested in combinatorial optimizations in manufacturing with uncertain input.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 164 pp. Englisch. Seller Inventory # 9789811942143