From
ZBK Books, Carlstadt, NJ, U.S.A.
Seller rating 5 out of 5 stars
AbeBooks Seller since March 10, 2023
Used book in good and clean conditions. Pages and cover are intact. Limited notes marks and highlighting may be present. May show signs of normal shelf wear and bends on edges. Item may be missing CDs or access codes. May include library marks. Fast Shipping. Seller Inventory # ZWM.OMQ4
There has been a dramatic growth in the development and application of Bayesian inferential methods. Some of this growth is due to the availability of powerful simulation-based algorithms to summarize posterior distributions. There has been also a growing interest in the use of the system R for statistical analyses. R's open source nature, free availability, and large number of contributor packages have made R the software of choice for many statisticians in education and industry.
Bayesian Computation with R introduces Bayesian modeling by the use of computation using the R language. The early chapters present the basic tenets of Bayesian thinking by use of familiar one and two-parameter inferential problems. Bayesian computational methods such as Laplace's method, rejection sampling, and the SIR algorithm are illustrated in the context of a random effects model. The construction and implementation of Markov Chain Monte Carlo (MCMC) methods is introduced. These simulation-based algorithms are implemented for a variety of Bayesian applications such as normal and binary response regression, hierarchical modeling, order-restricted inference, and robust modeling. Algorithms written in R are used to develop Bayesian tests and assess Bayesian models by use of the posterior predictive distribution. The use of R to interface with WinBUGS, a popular MCMC computing language, is described with several illustrative examples.
This book is a suitable companion book for an introductory course on Bayesian methods and is valuable to the statistical practitioner who wishes to learn more about the R language and Bayesian methodology. The LearnBayes package, written by the author and available from the CRAN website, contains all of the R functions described in the book.
The second edition contains several new topics such as the use of mixtures of conjugate priors and the use of Zellner’s g priors to choose between models in linear regression. There are more illustrations of the construction of informative prior distributions, such as the use of conditional means priors and multivariate normal priors in binary regressions. The new edition contains changes in the R code illustrations according to the latest edition of the LearnBayes package.
Review: The book is a concise presentation of a wide range of Bayesian inferential problems and the computational methods to solve them. The detailed and thorough presentation style, with complete R code for the examples, makes it a welcome companion to a theoretical text on Bayesian inference.... Smart students of statistics will want to have both R and Bayesian inference in their portfolio. Jim Albert's book is a good place to try out R while learning various computational methods for Bayesian inference. (Jouni Kerman, Teh American Statistician, February 2009, Vol. 63, No.1)
Title: Bayesian Computation with R (Use R)
Publisher: Springer
Publication Date: 2008
Binding: Soft cover
Condition: good
Seller: HPB Inc., Dallas, TX, U.S.A.
paperback. Condition: Very Good. Connecting readers with great books since 1972! Used books may not include companion materials, and may have some shelf wear or limited writing. We ship orders daily and Customer Service is our top priority! Seller Inventory # S_452092226
Seller: World of Books (was SecondSale), Montgomery, IL, U.S.A.
Condition: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Seller Inventory # 00092281420
Seller: Classics Books, Trenton, NJ, U.S.A.
Soft cover. Condition: Very Good. Seller Inventory # 006952
Seller: Reader's Corner, Inc., Raleigh, NC, U.S.A.
Soft cover. Condition: Fine. 1st Edition. This is a fine paperback first edition copy, yellow spine. Seller Inventory # 101250
Seller: Broad Street Books, Branchville, NJ, U.S.A.
paperback. Condition: Very Good. 1st ed. 2007. Corr. 2nd printing. Book is in excellent condition, text is unmarked and pages are tight. Small name stamp on first page and outer edge of page block. Seller Inventory # 62162
Seller: Bookbot, Prague, Czech Republic
Softcover. Condition: Fair. Wasserschaden / Verschmutzung; Leichte Risse; Gebogener Buchrucken. There has been a dramatic growth in the development and application of Bayesian inferential methods. Some of this growth is due to the availability of powerful simulation-based algorithms to summarize posterior distributions. There has been also a growing interest in the use of the system R for statistical analyses. R's open source nature, free availability, and large number of contributor packages have made R the software of choice for many statisticians in education and industry. Bayesian Computation with R introduces Bayesian modeling by the use of computation using the R language. The early chapters present the basic tenets of Bayesian thinking by use of familiar one and two-parameter inferential problems. Bayesian computational methods such as Laplace's method, rejection sampling, and the SIR algorithm are illustrated in the context of a random effects model. The construction and implementation of Markov Chain Monte Carlo (MCMC) methods is introduced. These simulation-based algorithms are implemented for a variety of Bayesian applications such as normal and binary response regression, hierarchical modeling, order-restricted inference, and robust modeling. Algorithms written in R are used to develop Bayesian tests and assess Bayesian models by use of the posterior predictive distribution. The use of R to interface with WinBUGS, a popular MCMC computing language, is described with several illustrative examples. This book is a suitable companion book for an introductory course on Bayesian methods and is valuable to the statistical practitioner who wishes to learn more about the R language and Bayesian methodology. The LearnBayes package, written by the author and available from the CRAN website, contains all of the R functions described in the book. The second edition contains several new topics such as the use of mixtures of conjugate priors and the use of Zellner's g priors to choose between models in linear regression. There are more illustrations of the construction of informative prior distributions, such as the use of conditional means priors and multivariate normal priors in binary regressions. The new edition contains changes in the R code illustrations according to the latest edition of the LearnBayes package. Seller Inventory # 16a2767f-b840-4cd8-9022-c31a4b5f8b4f
Quantity: 1 available
Seller: WorldofBooks, Goring-By-Sea, WS, United Kingdom
Paperback. Condition: Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Seller Inventory # GOR005788436
Quantity: 1 available
Seller: medimops, Berlin, Germany
Condition: acceptable. Ausreichend/Acceptable: Exemplar mit vollständigem Text und sämtlichen Abbildungen oder Karten. Schmutztitel oder Vorsatz können fehlen. Einband bzw. Schutzumschlag weisen unter Umständen starke Gebrauchsspuren auf. / Describes a book or dust jacket that has the complete text pages (including those with maps or plates) but may lack endpapers, half-title, etc. (which must be noted). Binding, dust jacket (if any), etc may also be worn. Seller Inventory # M00387713840-B
Quantity: 1 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. pp. x + 270 Illus. Seller Inventory # 7594750
Quantity: 1 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. x + 270 1st Edition. Seller Inventory # 26285985