Chip Multiprocessor Architecture: Techniques to Improve Throughput and Latency (Synthesis Lectures on Computer Architecture)

Olukotun, Kunle; Hammond, Lance; Laudon, James

ISBN 10: 3031005929 ISBN 13: 9783031005923
Published by Springer, 2007
New Soft cover

From Best Price, Torrance, CA, U.S.A. Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

AbeBooks Seller since August 30, 2024

This specific item is no longer available.

About this Item

Description:

SUPER FAST SHIPPING. Seller Inventory # 9783031005923

Report this item

Synopsis:

Chip multiprocessors - also called multi-core microprocessors or CMPs for short - are now the only way to build high-performance microprocessors, for a variety of reasons. Large uniprocessors are no longer scaling in performance, because it is only possible to extract a limited amount of parallelism from a typical instruction stream using conventional superscalar instruction issue techniques. In addition, one cannot simply ratchet up the clock speed on today's processors, or the power dissipation will become prohibitive in all but water-cooled systems. Compounding these problems is the simple fact that with the immense numbers of transistors available on today's microprocessor chips, it is too costly to design and debug ever-larger processors every year or two. CMPs avoid these problems by filling up a processor die with multiple, relatively simpler processor cores instead of just one huge core. The exact size of a CMP's cores can vary from very simple pipelines to moderately complex superscalar processors, but once a core has been selected the CMP's performance can easily scale across silicon process generations simply by stamping down more copies of the hard-to-design, high-speed processor core in each successive chip generation. In addition, parallel code execution, obtained by spreading multiple threads of execution across the various cores, can achieve significantly higher performance than would be possible using only a single core. While parallel threads are already common in many useful workloads, there are still important workloads that are hard to divide into parallel threads. The low inter-processor communication latency between the cores in a CMP helps make a much wider range of applications viable candidates for parallel execution than was possible with conventional, multi-chip multiprocessors; nevertheless, limited parallelism in key applications is the main factor limiting acceptance of CMPs in some types of systems. After a discussion of the basic pros and cons of CMPs when they are compared with conventional uniprocessors, this book examines how CMPs can best be designed to handle two radically different kinds of workloads that are likely to be used with a CMP: highly parallel, throughput-sensitive applications at one end of the spectrum, and less parallel, latency-sensitive applications at the other. Throughput-sensitive applications, such as server workloads that handle many independent transactions at once, require careful balancing of all parts of a CMP that can limit throughput, such as the individual cores, on-chip cache memory, and off-chip memory interfaces. Several studies and example systems, such as the Sun Niagara, that examine the necessary tradeoffs are presented here. In contrast, latency-sensitive applications - many desktop applications fall into this category - require a focus on reducing inter-core communication latency and applying techniques to help programmers divide their programs into multiple threads as easily as possible. This book discusses many techniques that can be used in CMPs to simplify parallel programming, with an emphasis on research directions proposed at Stanford University. To illustrate the advantages possible with a CMP using a couple of solid examples, extra focus is given to thread-level speculation (TLS), a way to automatically break up nominally sequential applications into parallel threads on a CMP, and transactional memory. This model can greatly simplify manual parallel programming by using hardware - instead of conventional software locks - to enforce atomic code execution of blocks of instructions, a technique that makes parallel coding much less error-prone. Contents: The Case for CMPs / Improving Throughput / Improving Latency Automatically / Improving Latency using Manual Parallel Programming / A Multicore World: The Future of CMPs

About the Author: Kunle Olukotun is a Professor of Electrical Engineering and Computer Science at Stanford University. Olukotun led the Stanford Hydra project which developed the first chip multiprocessor (multicore chip) with support for thread-level speculation. Using insights gained from the Hydra project, Olukotun founded Afara Websystems to demonstrate the benefits of chip multiprocessor technology for high-throughput, low power server systems. Afara microprocessor technology, called Niagara, was acquired by Sun Microsystems. The Niagara based Sun Fire CoolThreads servers have become one of Sun’s fastest ramping products ever. Olukotun is actively involved in research in computer architecture, parallel programming environments and scalable parallel systems. Currently, Olukotun directs the Stanford Pervasive Parallelism Lab (PPL) which seeks to proliferate the use of parallelism in all application areas. Olukotun is a Fellow of the ACM. Olukotun received his Ph.D. in Computer Engineering from TheUniversity of Michigan. James Laudon is a Distinguished Engineer with Sun Microsystems. His areas of expertise include multithreading, multiprocessors, and performance modelling. He is currently focused on the architecture of future generations in the UltraSPARC T1 chip multiprocessor line. James joined Sun in July of 2002 through the acquisition of Afara Websystems.

"About this title" may belong to another edition of this title.

Bibliographic Details

Title: Chip Multiprocessor Architecture: Techniques...
Publisher: Springer
Publication Date: 2007
Binding: Soft cover
Condition: New

Top Search Results from the AbeBooks Marketplace

Stock Image

OLUKOTUN, KUNLE
Published by Springer, 2007
ISBN 10: 3031005929 ISBN 13: 9783031005923
New Softcover

Seller: Speedyhen, London, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: NEW. Seller Inventory # NW9783031005923

Contact seller

Buy New

US$ 34.66
Shipping: US$ 53.95
From United Kingdom to U.S.A.

Quantity: 1 available

Add to basket

Seller Image

Olukotun, Kunle; Hammond, Lance; Laudon, James
Published by Springer, 2007
ISBN 10: 3031005929 ISBN 13: 9783031005923
New Softcover

Seller: GreatBookPricesUK, Woodford Green, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Seller Inventory # 44569582-n

Contact seller

Buy New

US$ 38.12
Shipping: US$ 19.74
From United Kingdom to U.S.A.

Quantity: 1 available

Add to basket

Stock Image

Kunle Olukotun
Published by Springer, 2007
ISBN 10: 3031005929 ISBN 13: 9783031005923
New PAP

Seller: PBShop.store UK, Fairford, GLOS, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

PAP. Condition: New. New Book. Shipped from UK. Established seller since 2000. Seller Inventory # GB-9783031005923

Contact seller

Buy New

US$ 38.13
Shipping: US$ 5.47
From United Kingdom to U.S.A.

Quantity: 1 available

Add to basket

Seller Image

Olukotun, Kunle; Hammond, Lance; Laudon, James
Published by Springer, 2007
ISBN 10: 3031005929 ISBN 13: 9783031005923
Used Softcover

Seller: GreatBookPrices, Columbia, MD, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: As New. Unread book in perfect condition. Seller Inventory # 44569582

Contact seller

Buy Used

US$ 39.53
Shipping: US$ 2.64
Within U.S.A.

Quantity: 1 available

Add to basket

Seller Image

Olukotun, Kunle; Hammond, Lance; Laudon, James
Published by Springer, 2007
ISBN 10: 3031005929 ISBN 13: 9783031005923
New Softcover

Seller: GreatBookPrices, Columbia, MD, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Seller Inventory # 44569582-n

Contact seller

Buy New

US$ 41.02
Shipping: US$ 2.64
Within U.S.A.

Quantity: 1 available

Add to basket

Stock Image

Olukotun, Kunle; Hammond, Lance; Laudon, James
Published by Springer, 2007
ISBN 10: 3031005929 ISBN 13: 9783031005923
New Softcover

Seller: Ria Christie Collections, Uxbridge, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. In English. Seller Inventory # ria9783031005923_new

Contact seller

Buy New

US$ 41.17
Shipping: US$ 15.76
From United Kingdom to U.S.A.

Quantity: Over 20 available

Add to basket

Stock Image

Olukotun, Kunle; Hammond, Lance; Laudon, James
Published by Springer, 2007
ISBN 10: 3031005929 ISBN 13: 9783031005923
New Softcover

Seller: Lucky's Textbooks, Dallas, TX, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Seller Inventory # ABLIING23Mar3113020034875

Contact seller

Buy New

US$ 41.57
Shipping: US$ 3.99
Within U.S.A.

Quantity: Over 20 available

Add to basket

Seller Image

Kunle Olukotun (u. a.)
ISBN 10: 3031005929 ISBN 13: 9783031005923
New Taschenbuch

Seller: preigu, Osnabrück, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. Chip Multiprocessor Architecture | Techniques to Improve Throughput and Latency | Kunle Olukotun (u. a.) | Taschenbuch | viii | Englisch | 2007 | Springer International Publishing | EAN 9783031005923 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Seller Inventory # 121975077

Contact seller

Buy New

US$ 42.89
Shipping: US$ 81.30
From Germany to U.S.A.

Quantity: 5 available

Add to basket

Seller Image

Olukotun, Kunle; Hammond, Lance; Laudon, James
Published by Springer, 2007
ISBN 10: 3031005929 ISBN 13: 9783031005923
Used Softcover

Seller: GreatBookPricesUK, Woodford Green, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: As New. Unread book in perfect condition. Seller Inventory # 44569582

Contact seller

Buy Used

US$ 43.12
Shipping: US$ 19.74
From United Kingdom to U.S.A.

Quantity: 1 available

Add to basket

Seller Image

Kunle Olukotun
ISBN 10: 3031005929 ISBN 13: 9783031005923
New Taschenbuch
Print on Demand

Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Chip multiprocessors - also called multi-core microprocessors or CMPs for short - are now the only way to build high-performance microprocessors, for a variety of reasons. Large uniprocessors are no longer scaling in performance, because it is only possible to extract a limited amount of parallelism from a typical instruction stream using conventional superscalar instruction issue techniques. In addition, one cannot simply ratchet up the clock speed on today's processors, or the power dissipation will become prohibitive in all but water-cooled systems. Compounding these problems is the simple fact that with the immense numbers of transistors available on today's microprocessor chips, it is too costly to design and debug ever-larger processors every year or two. CMPs avoid these problems by filling up a processor die with multiple, relatively simpler processor cores instead of just one huge core. The exact size of a CMP's cores can vary from very simple pipelines to moderately complex superscalar processors, but once a core has been selected the CMP's performance can easily scale across silicon process generations simply by stamping down more copies of the hard-to-design, high-speed processor core in each successive chip generation. In addition, parallel code execution, obtained by spreading multiple threads of execution across the various cores, can achieve significantly higher performance than would be possible using only a single core. While parallel threads are already common in many useful workloads, there are still important workloads that are hard to divide into parallel threads. The low inter-processor communication latency between the cores in a CMP helps make a much wider range of applications viable candidates for parallel execution than was possible with conventional, multi-chip multiprocessors; nevertheless, limited parallelism in key applications is the main factor limiting acceptance of CMPs in some types of systems. After a discussion of the basic pros and cons of CMPs when they are compared with conventional uniprocessors, this book examines how CMPs can best be designed to handle two radically different kinds of workloads that are likely to be used with a CMP: highly parallel, throughput-sensitive applications at one end of the spectrum, and less parallel, latency-sensitive applications at the other. Throughput-sensitive applications, such as server workloads that handle many independent transactions at once, require careful balancing of all parts of a CMP that can limit throughput, such as the individual cores, on-chip cache memory, and off-chip memory interfaces. Several studies and example systems, such as the Sun Niagara, that examine the necessary tradeoffs are presented here. In contrast, latency-sensitive applications - many desktop applications fall into this category - require a focus on reducing inter-core communication latency and applying techniques to help programmers divide their programs into multiple threads as easily as possible. This book discusses many techniques that can be used in CMPs to simplify parallel programming, with an emphasis on research directions proposed at Stanford University. To illustrate the advantages possible with a CMP using a couple of solid examples, extra focus is given to thread-level speculation (TLS), a way to automatically break up nominally sequential applications into parallel threads on a CMP, and transactional memory. This model can greatly simplify manual parallel programming by using hardware - instead of conventional software locks - to enforce atomic code execution of blocks of instructions, a technique that makes parallel coding much less error-prone. Contents: The Case for CMPs / Improving Throughput / Improving Latency Automatically / Improving Latency using Manual Parallel Programming / A Multicore World: The Future of CMPs 156 pp. Englisch. Seller Inventory # 9783031005923

Contact seller

Buy New

US$ 44.79
Shipping: US$ 26.71
From Germany to U.S.A.

Quantity: 2 available

Add to basket

There are 9 more copies of this book

View all search results for this book