DATA SCIENCE AND PREDICTIVE ANALYTICS: BIOMEDICAL AND HEALTH APPLICATIONS USING R (THE SPRINGER SERIES IN APPLIED MACHINE LEARNING)

DINOV, IVO D.

ISBN 10: 3031174852 ISBN 13: 9783031174858
Published by Springer, 2024
New Soft cover

From Basi6 International, Irving, TX, U.S.A. Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

AbeBooks Seller since June 24, 2016

This specific item is no longer available.

About this Item

Description:

New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Seller Inventory # ABEJUNE24-376525

Report this item

Synopsis:

This textbook integrates important mathematical foundations, efficient computational algorithms, applied statistical inference techniques, and cutting-edge machine learning approaches to address a wide range of crucial biomedical informatics, health analytics applications, and decision science challenges. Each concept in the book includes a rigorous symbolic formulation coupled with computational algorithms and complete end-to-end pipeline protocols implemented as functional R electronic markdown notebooks. These workflows support active learning and demonstrate comprehensive data manipulations, interactive visualizations, and sophisticated analytics. The content includes open problems, state-of-the-art scientific knowledge, ethical integration of heterogeneous scientific tools, and procedures for systematic validation and dissemination of reproducible research findings.

Complementary to the enormous challenges related to handling, interrogating, and understanding massive amounts of complex structured and unstructured data, there are unique opportunities that come with access to a wealth of feature-rich, high-dimensional, and time-varying information. The topics covered in Data Science and Predictive Analytics address specific knowledge gaps, resolve educational barriers, and mitigate workforce information-readiness and data science deficiencies. Specifically, it provides a transdisciplinary curriculum integrating core mathematical principles, modern computational methods, advanced data science techniques, model-based machine learning, model-free artificial intelligence, and innovative biomedical applications. The book’s fourteen chapters start with an introduction and progressively build foundational skills from visualization to linear modeling, dimensionality reduction, supervised classification, black-box machine learning techniques, qualitative learning methods, unsupervised clustering, model performance assessment, feature selection strategies, longitudinal data analytics, optimization, neural networks, and deep learning. The second edition of the book includes additional learning-based strategies utilizing generative adversarial networks, transfer learning, and synthetic data generation, as well as eight complementary electronic appendices. 

This textbook is suitable for formal didactic instructor-guided course education, as well as for individual or team-supported self-learning. The material is presented at the upper-division and graduate-level college courses and covers applied and interdisciplinary mathematics, contemporary learning-based data science techniques, computational algorithm development, optimization theory, statistical computing, and biomedical sciences. The analytical techniques and predictive scientific methods described in the book may be useful to a wide range of readers, formal and informal learners, college instructors, researchers, and engineers throughout the academy, industry, government, regulatory, funding, and policy agencies. The supporting book website provides many examples, datasets, functional scripts, complete electronic notebooks, extensive appendices, and additional materials.



About the Author: Professor Ivo D. Dinov directs the Statistics Online Computational Resource (SOCR) at the University of Michigan and serves as associate director of the Michigan Institute for Data Science (MIDAS). He is an expert in mathematical modeling, statistical analysis, high-throughput computational processing, and scientific visualization of large, complex and heterogeneous datasets (Big Data). Dr. Dinov is developing, validating, and disseminating novel technology-enhanced pedagogical approaches for STEM education and active data science learning. His artificial intelligence and machine learning work involves compressive big data analytics, statistical obfuscation of sensitive data, complex time (kime) representation, model-based and model-free techniques for kimesurface analytics. Dr. Dinov is a member of the American Statistical Association, the American Mathematical Society, the American Physical Society, the American Association for the Advancement of Science, an honorary member ofthe Sigma Theta Tau International Society, and an elected member of the International Statistical Institute.

"About this title" may belong to another edition of this title.

Bibliographic Details

Title: DATA SCIENCE AND PREDICTIVE ANALYTICS: ...
Publisher: Springer
Publication Date: 2024
Binding: Soft cover
Condition: Brand New
Edition: 2nd Edition

Top Search Results from the AbeBooks Marketplace

Seller Image

Dinov, Ivo D.
ISBN 10: 3031174852 ISBN 13: 9783031174858
New Kartoniert / Broschiert
Print on Demand

Seller: moluna, Greven, Germany

Seller rating 4 out of 5 stars 4-star rating, Learn more about seller ratings

Kartoniert / Broschiert. Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This textbook integrates important mathematical foundations, efficient computational algorithms, applied statistical inference techniques, and cutting-edge machine learning approaches to address a wide range of crucial biomedical informatics, health analyti. Seller Inventory # 1362013022

Contact seller

Buy New

US$ 88.03
Convert currency
Shipping: US$ 57.44
From Germany to U.S.A.
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Stock Image

Dinov, Ivo D.
Published by Springer, 2024
ISBN 10: 3031174852 ISBN 13: 9783031174858
New Softcover

Seller: Majestic Books, Hounslow, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Seller Inventory # 397481200

Contact seller

Buy New

US$ 101.98
Convert currency
Shipping: US$ 8.74
From United Kingdom to U.S.A.
Destination, rates & speeds

Quantity: 1 available

Add to basket

Stock Image

Dinov, Ivo D.
Published by Springer, 2024
ISBN 10: 3031174852 ISBN 13: 9783031174858
New Softcover

Seller: Books Puddle, New York, NY, U.S.A.

Seller rating 4 out of 5 stars 4-star rating, Learn more about seller ratings

Condition: New. 2nd ed. 2023 edition NO-PA16APR2015-KAP. Seller Inventory # 26398895919

Contact seller

Buy New

US$ 102.72
Convert currency
Shipping: US$ 3.99
Within U.S.A.
Destination, rates & speeds

Quantity: 1 available

Add to basket

Seller Image

Ivo D. Dinov
ISBN 10: 3031174852 ISBN 13: 9783031174858
New Taschenbuch
Print on Demand

Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This textbook integrates important mathematical foundations, efficient computational algorithms, applied statistical inference techniques, and cutting-edge machine learning approaches to address a wide range of crucial biomedical informatics, health analytics applications, and decision science challenges. Each concept in the book includes a rigorous symbolic formulation coupled with computational algorithms and complete end-to-end pipeline protocols implemented as functional R electronic markdown not Elektronisches Buch. These workflows support active learning and demonstrate comprehensive data manipulations, interactive visualizations, and sophisticated analytics. The content includes open problems, state-of-the-art scientific knowledge, ethical integration of heterogeneous scientific tools, and procedures for systematic validation and dissemination of reproducible research findings.Complementary to the enormous challenges related to handling, interrogating, and understanding massive amounts of complex structured and unstructured data, there are unique opportunities that come with access to a wealth of feature-rich, high-dimensional, and time-varying information. The topics covered in Data Science and Predictive Analyticsaddress specific knowledge gaps, resolve educational barriers, and mitigate workforce information-readiness and data science deficiencies. Specifically, it provides a transdisciplinary curriculum integrating core mathematical principles, modern computational methods, advanced data science techniques, model-based machine learning, model-free artificial intelligence, and innovative biomedical applications. The book's fourteen chapters start with an introduction and progressively build foundational skills from visualization to linear modeling, dimensionality reduction, supervised classification, black-box machine learning techniques, qualitative learning methods, unsupervised clustering, model performance assessment, feature selection strategies, longitudinal data analytics, optimization, neural networks, and deep learning. The second edition of the book includes additional learning-based strategies utilizing generative adversarial networks, transfer learning, and synthetic data generation, as well as eight complementary electronic appendices.This textbook is suitable for formal didactic instructor-guided course education, as well as for individual or team-supported self-learning. The material is presented at the upper-division and graduate-level college courses and covers applied and interdisciplinary mathematics, contemporary learning-based data science techniques, computational algorithm development, optimization theory, statistical computing, and biomedical sciences. The analytical techniques and predictive scientific methods described in the book may be useful to a wide range of readers, formal and informal learners, college instructors, researchers, and engineers throughout the academy, industry, government, regulatory, funding, and policy agencies. The supporting book website provides many examples, datasets, functional scripts, complete electronic not Elektronisches Buch, extensive appendices, and additional materials. 918 pp. Englisch. Seller Inventory # 9783031174858

Contact seller

Buy New

US$ 103.37
Convert currency
Shipping: US$ 26.97
From Germany to U.S.A.
Destination, rates & speeds

Quantity: 2 available

Add to basket

Seller Image

Ivo D. Dinov
ISBN 10: 3031174852 ISBN 13: 9783031174858
New Taschenbuch

Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. Neuware -This textbook integrates important mathematical foundations, efficient computational algorithms, applied statistical inference techniques, and cutting-edge machine learning approaches to address a wide range of crucial biomedical informatics, health analytics applications, and decision science challenges. Each concept in the book includes a rigorous symbolic formulation coupled with computational algorithms and complete end-to-end pipeline protocols implemented as functional R electronic markdown not Elektronisches Buch. These workflows support active learning and demonstrate comprehensive data manipulations, interactive visualizations, and sophisticated analytics. The content includes open problems, state-of-the-art scientific knowledge, ethical integration of heterogeneous scientific tools, and procedures for systematic validation and dissemination of reproducible research findings.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 952 pp. Englisch. Seller Inventory # 9783031174858

Contact seller

Buy New

US$ 103.37
Convert currency
Shipping: US$ 70.35
From Germany to U.S.A.
Destination, rates & speeds

Quantity: 2 available

Add to basket

Seller Image

Ivo D. Dinov
ISBN 10: 3031174852 ISBN 13: 9783031174858
New Taschenbuch

Seller: AHA-BUCH GmbH, Einbeck, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This textbook integrates important mathematical foundations, efficient computational algorithms, applied statistical inference techniques, and cutting-edge machine learning approaches to address a wide range of crucial biomedical informatics, health analytics applications, and decision science challenges. Each concept in the book includes a rigorous symbolic formulation coupled with computational algorithms and complete end-to-end pipeline protocols implemented as functional R electronic markdown not Elektronisches Buch. These workflows support active learning and demonstrate comprehensive data manipulations, interactive visualizations, and sophisticated analytics. The content includes open problems, state-of-the-art scientific knowledge, ethical integration of heterogeneous scientific tools, and procedures for systematic validation and dissemination of reproducible research findings.Complementary to the enormous challenges related to handling, interrogating, and understanding massive amounts of complex structured and unstructured data, there are unique opportunities that come with access to a wealth of feature-rich, high-dimensional, and time-varying information. The topics covered in Data Science and Predictive Analyticsaddress specific knowledge gaps, resolve educational barriers, and mitigate workforce information-readiness and data science deficiencies. Specifically, it provides a transdisciplinary curriculum integrating core mathematical principles, modern computational methods, advanced data science techniques, model-based machine learning, model-free artificial intelligence, and innovative biomedical applications. The book's fourteen chapters start with an introduction and progressively build foundational skills from visualization to linear modeling, dimensionality reduction, supervised classification, black-box machine learning techniques, qualitative learning methods, unsupervised clustering, model performance assessment, feature selection strategies, longitudinal data analytics, optimization, neural networks, and deep learning. The second edition of the book includes additional learning-based strategies utilizing generative adversarial networks, transfer learning, and synthetic data generation, as well as eight complementary electronic appendices.This textbook is suitable for formal didactic instructor-guided course education, as well as for individual or team-supported self-learning. The material is presented at the upper-division and graduate-level college courses and covers applied and interdisciplinary mathematics, contemporary learning-based data science techniques, computational algorithm development, optimization theory, statistical computing, and biomedical sciences. The analytical techniques and predictive scientific methods described in the book may be useful to a wide range of readers, formal and informal learners, college instructors, researchers, and engineers throughout the academy, industry, government, regulatory, funding, and policy agencies. The supporting book website provides many examples, datasets, functional scripts, complete electronic not Elektronisches Buch, extensive appendices, and additional materials. Seller Inventory # 9783031174858

Contact seller

Buy New

US$ 103.37
Convert currency
Shipping: US$ 78.62
From Germany to U.S.A.
Destination, rates & speeds

Quantity: 1 available

Add to basket

Stock Image

Dinov, Ivo D.
Published by Springer, 2024
ISBN 10: 3031174852 ISBN 13: 9783031174858
New Softcover

Seller: Biblios, Frankfurt am main, HESSE, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Seller Inventory # 18398895909

Contact seller

Buy New

US$ 114.18
Convert currency
Shipping: US$ 11.67
From Germany to U.S.A.
Destination, rates & speeds

Quantity: 1 available

Add to basket