From
SMASS Sellers, IRVING, TX, U.S.A.
Seller rating 5 out of 5 stars
AbeBooks Seller since February 22, 2022
Brand New Original US Edition. Customer service! Satisfaction Guaranteed. Seller Inventory # ASNT3-241640
This expository book presents the mathematical description of evolutionary models of populations subject to interactions (e.g. competition) within the population. The author includes both models of finite populations, and limiting models as the size of the population tends to infinity. The size of the population is described as a random function of time and of the initial population (the ancestors at time 0). The genealogical tree of such a population is given. Most models imply that the population is bound to go extinct in finite time. It is explained when the interaction is strong enough so that the extinction time remains finite, when the ancestral population at time 0 goes to infinity. The material could be used for teaching stochastic processes, together with their applications.
About the Author: Étienne Pardoux is Professor at Aix-Marseille University, working in the field of Stochastic Analysis, in particular Stochastic partial differential equations. He obtained his PhD in 1975 at University of Paris-Sud.
Title: PROBABILISTIC MODELS OF POPULATION EVOLUTION...
Publisher: Springer
Publication Date: 2016
Binding: Soft cover
Condition: New
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Seller Inventory # 370421499
Quantity: 4 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. Seller Inventory # 26375623972
Quantity: 4 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. Seller Inventory # 18375623982
Quantity: 4 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Includes deep mathematical notions in connection with motivating applicationsSuitable for graduate students and researchers in mathematical biologyCo-published jointly with Mathematical Biosciences Institute. Seller Inventory # 117040918
Quantity: Over 20 available
Seller: Best Price, Torrance, CA, U.S.A.
Condition: New. SUPER FAST SHIPPING. Seller Inventory # 9783319303260
Quantity: 3 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This expositorybook presents the mathematical description of evolutionary models of populations subject to interactions (e.g. competition) within the population. The authorincludes both models of finite populations, and limiting models as the size of the population tends to infinity.The size of the population is describedas a random function of time and of the initial population (the ancestors at time 0). The genealogical tree of such apopulation is given. Most models imply that the population is bound to go extinct in finite time. It is explained when the interaction is strong enough so that the extinction time remains finite, when the ancestral population at time 0 goes to infinity. The material could be used for teaching stochastic processes, together with their applications.Étienne Pardoux is Professor at Aix-Marseille University, working in the field of Stochastic Analysis, stochastic partial differential equations, and probabilistic models in evolutionary biology and population genetics. He obtained his PhD in 1975 at University of Paris-Sud. Seller Inventory # 9783319303260
Quantity: 1 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This expository book presents the mathematical description of evolutionary models of populations subject to interactions (e.g. competition) within the population. The author includes both models of finite populations, and limiting models as the size of the population tends to infinity. The size of the population is described as a random function of time and of the initial population (the ancestors at time 0). The genealogical tree of such a population is given. Most models imply that the population is bound to go extinct in finite time. It is explained when the interaction is strong enough so that the extinction time remains finite, when the ancestral population at time 0 goes to infinity. The material could be used for teaching stochastic processes, together with their applications.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 136 pp. Englisch. Seller Inventory # 9783319303260
Quantity: 1 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This expositorybook presents the mathematical description of evolutionary models of populations subject to interactions (e.g. competition) within the population. The authorincludes both models of finite populations, and limiting models as the size of the population tends to infinity.The size of the population is describedas a random function of time and of the initial population (the ancestors at time 0). The genealogical tree of such apopulation is given. Most models imply that the population is bound to go extinct in finite time. It is explained when the interaction is strong enough so that the extinction time remains finite, when the ancestral population at time 0 goes to infinity. The material could be used for teaching stochastic processes, together with their applications.Étienne Pardoux is Professor at Aix-Marseille University, working in the field of Stochastic Analysis, stochastic partial differential equations, and probabilistic models in evolutionary biology and population genetics. He obtained his PhD in 1975 at University of Paris-Sud. 136 pp. Englisch. Seller Inventory # 9783319303260
Quantity: 2 available
Seller: Grand Eagle Retail, Mason, OH, U.S.A.
Paperback. Condition: new. Paperback. This expository book presents the mathematical description of evolutionary models of populations subject to interactions (e.g. competition) within the population. The author includes both models of finite populations, and limiting models as the size of the population tends to infinity. The size of the population is described as a random function of time and of the initial population (the ancestors at time 0). The genealogical tree of such a population is given. Most models imply that the population is bound to go extinct in finite time. It is explained when the interaction is strong enough so that the extinction time remains finite, when the ancestral population at time 0 goes to infinity. The material could be used for teaching stochastic processes, together with their applications.Etienne Pardoux is Professor at Aix-Marseille University, working in the field of Stochastic Analysis, stochastic partial differential equations, and probabilistic models in evolutionary biology and population genetics. He obtained his PhD in 1975 at University of Paris-Sud. The size of the population is described as a random function of time and of the initial population (the ancestors at time 0). Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9783319303260
Quantity: 1 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 125 pages. 9.25x6.25x0.75 inches. In Stock. Seller Inventory # x-3319303260
Quantity: 2 available