From
GreatBookPrices, Columbia, MD, U.S.A.
Seller rating 5 out of 5 stars
AbeBooks Seller since April 6, 2009
Unread book in perfect condition. Seller Inventory # 21777190
Language Notes: Text: English, Russian (translation)
Title: Zero-range Potentials and Their Applications...
Publisher: Springer
Publication Date: 2012
Binding: Soft cover
Condition: As New
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. 1 Basic Principles of the Zero-Range Potential Method.- 1.1 Introduction.- 1.2 Formulation of the Method.- 1.3 The One-Center Problem and Its Simple Applications.- 1.4 Separable Potentials and Scattering of Slow Electrons by Atoms.- 2 Trajectories of the Po. Seller Inventory # 4204202
Quantity: Over 20 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar2716030069066
Quantity: Over 20 available
Seller: Grand Eagle Retail, Bensenville, IL, U.S.A.
Paperback. Condition: new. Paperback. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9781468454536
Quantity: 1 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -1 Basic Principles of the Zero-Range Potential Method.- 1.1 Introduction.- 1.2 Formulation of the Method.- 1.3 The One-Center Problem and Its Simple Applications.- 1.4 Separable Potentials and Scattering of Slow Electrons by Atoms.- 2 Trajectories of the Poles of the S-Matrix and Resonance Scattering.- 2.1 Preliminary Remarks.- 2.2 Trajectories of the Zeros of the Jost Function for = 0.- 2.3 The S-Matrix in a Two-Pole Approximation.- 2.4 The Case of 0 and Perturbation Theory for a Bound State Close to the Continuum.- 2.5 Trajectories of the Poles of the S-Matrix in the Case of ZRP and Separable Potentials.- 3 Zero-Range Potentials for Molecular Systems. Bound States.- 3.1 Many-Center Problems without External Fields.- 3.2 Potential Curves for a Two-Center System and Some Applications.- 3.3 Analytic Properties of the Potential Curves and Trajectories of the Poles of the S-Matrix.- 3.4 Perturbation Theory in the Presence of an External Electric Field.- 3.5 Perturbation Theory in the Presence of an External Magnetic Field.- 3.6 Solution of the Schrödinger Equation with the Help of ZRPs.- 4 Scattering by a System of Zero-Range Potentials and the Partial Wave Method for a Nonspherical Scatterer.- 4.1 The Partial Wave Method.- 4.2 Behavior of the Phases at Low Energy.- 4.3 The Variational Principle.- 4.4 Scattering by a System of ZRPs.- 4.5 ZRPs in the Theory of Multiple Scattering.- 5 Zero-Range Potentials in Multi-Channel Problems.- 5.1 Zero-Range Potentials for a Many-Component Wavefunction.- 5.2 Singlet-Triplet Splitting and Cross Sections for Elastic and Inelastic Scattering.- 5.3 Energy Terms of the e + H2 System and Trajectories of the Poles of the S-Matrix for a Two-Channel Problem.- 5.4 Electron Scattering by Molecules in the Separable PotentialApproximation.- 6 Motion of a Particle in a Periodic Field of Zero-Range Potentials.- 6.1 One-Dimensional Lattice in a Three-Dimensional Space. Bound States.- 6.2 Electron Scattering by Long Linear Molecules.- 6.3 Two-Dimensional Lattice in Three-Dimensional Space.- 6.4 Three-Dimensional Lattice and the Method of Ewald.- 7 Weakly Bound Systems in Electric and Magnetic Fields.- 7.1 Weakly Bound Systems in a Homogeneous Electric Field.- 7.2 Weakly Bound Systems in a Homogeneous Magnetic Field.- 7.3 Weakly Bound Systems in Crossed Electric and Magnetic Fields.- 7.4 A Combination of ZRPs and a Coulomb Field.- 8 Electron Detachment in Slow Collisions Between a Negative Ion and an Atom.- 8.1 ZRPs in Time-Dependent Quantum Mechanical Problems.- 8.2 Linear Approximation in Detachment Theory.- 8.3 Account of the Finite Size of the Colliding System.- 8.4 Production of Negative Ions in Three-Body Collisions.- 9 Time-Dependent Quantum Mechanical Problems Solvable by Contour Integration.- 9.1 General Time-Dependent Problems Solvable by Contour Integration.- 9.2 Adiabatic Approximation and Trajectories of the Poles of the S-Matrix.- 9.3 Ionization in Slow Atomic Collisions.- 10 Nonlinear Approximations in the Theory of Electron Detachment.- 10.1 Nonlinear Problems Solvable by Contour Integration. Sudden Approximation.- 10.2 Quadratic Approximation in the Theory of Electron Detachment.- 10.3 Quadratic Approximation (General Case).- 11 Time-Independent Quantum Mechanical Problems.- 11.1 Account of the Quantal Motion of the Nuclei in Detachment Theory.- 11.2 Time-Independent Quantum Mechanical Problems Solvable by Contour Integration.- References. 300 pp. Englisch. Seller Inventory # 9781468454536
Quantity: 2 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -1 Basic Principles of the Zero-Range Potential Method.- 1.1 Introduction.- 1.2 Formulation of the Method.- 1.3 The One-Center Problem and Its Simple Applications.- 1.4 Separable Potentials and Scattering of Slow Electrons by Atoms.- 2 Trajectories of the Poles of the S-Matrix and Resonance Scattering.- 2.1 Preliminary Remarks.- 2.2 Trajectories of the Zeros of the Jost Function for = 0.- 2.3 The S-Matrix in a Two-Pole Approximation.- 2.4 The Case of 0 and Perturbation Theory for a Bound State Close to the Continuum.- 2.5 Trajectories of the Poles of the S-Matrix in the Case of ZRP and Separable Potentials.- 3 Zero-Range Potentials for Molecular Systems. Bound States.- 3.1 Many-Center Problems without External Fields.- 3.2 Potential Curves for a Two-Center System and Some Applications.- 3.3 Analytic Properties of the Potential Curves and Trajectories of the Poles of the S-Matrix.- 3.4 Perturbation Theory in the Presence of an External Electric Field.- 3.5 Perturbation Theory in the Presence of an External Magnetic Field.- 3.6 Solution of the Schr¿dinger Equation with the Help of ZRPs.- 4 Scattering by a System of Zero-Range Potentials and the Partial Wave Method for a Nonspherical Scatterer.- 4.1 The Partial Wave Method.- 4.2 Behavior of the Phases at Low Energy.- 4.3 The Variational Principle.- 4.4 Scattering by a System of ZRPs.- 4.5 ZRPs in the Theory of Multiple Scattering.- 5 Zero-Range Potentials in Multi-Channel Problems.- 5.1 Zero-Range Potentials for a Many-Component Wavefunction.- 5.2 Singlet-Triplet Splitting and Cross Sections for Elastic and Inelastic Scattering.- 5.3 Energy Terms of the e + H2 System and Trajectories of the Poles of the S-Matrix for a Two-Channel Problem.- 5.4 Electron Scattering by Molecules in the Separable Potential Approximation.- 6 Motion of a Particle in a Periodic Field of Zero-Range Potentials.- 6.1 One-Dimensional Lattice in a Three-Dimensional Space. Bound States.- 6.2 Electron Scattering by Long Linear Molecules.- 6.3 Two-Dimensional Lattice in Three-Dimensional Space.- 6.4 Three-Dimensional Lattice and the Method of Ewald.- 7 Weakly Bound Systems in Electric and Magnetic Fields.- 7.1 Weakly Bound Systems in a Homogeneous Electric Field.- 7.2 Weakly Bound Systems in a Homogeneous Magnetic Field.- 7.3 Weakly Bound Systems in Crossed Electric and Magnetic Fields.- 7.4 A Combination of ZRPs and a Coulomb Field.- 8 Electron Detachment in Slow Collisions Between a Negative Ion and an Atom.- 8.1 ZRPs in Time-Dependent Quantum Mechanical Problems.- 8.2 Linear Approximation in Detachment Theory.- 8.3 Account of the Finite Size of the Colliding System.- 8.4 Production of Negative Ions in Three-Body Collisions.- 9 Time-Dependent Quantum Mechanical Problems Solvable by Contour Integration.- 9.1 General Time-Dependent Problems Solvable by Contour Integration.- 9.2 Adiabatic Approximation and Trajectories of the Poles of the S-Matrix.- 9.3 Ionization in Slow Atomic Collisions.- 10 Nonlinear Approximations in the Theory of Electron Detachment.- 10.1 Nonlinear Problems Solvable by Contour Integration. Sudden Approximation.- 10.2 Quadratic Approximation in the Theory of Electron Detachment.- 10.3 Quadratic Approximation (General Case).- 11 Time-Independent Quantum Mechanical Problems.- 11.1 Account of the Quantal Motion of the Nuclei in Detachment Theory.- 11.2 Time-Independent Quantum Mechanical Problems Solvable by Contour Integration.- References.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 300 pp. Englisch. Seller Inventory # 9781468454536
Quantity: 1 available
Seller: Chiron Media, Wallingford, United Kingdom
Paperback. Condition: New. Seller Inventory # 6666-IUK-9781468454536
Quantity: 10 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781468454536_new
Quantity: Over 20 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - 1 Basic Principles of the Zero-Range Potential Method.- 1.1 Introduction.- 1.2 Formulation of the Method.- 1.3 The One-Center Problem and Its Simple Applications.- 1.4 Separable Potentials and Scattering of Slow Electrons by Atoms.- 2 Trajectories of the Poles of the S-Matrix and Resonance Scattering.- 2.1 Preliminary Remarks.- 2.2 Trajectories of the Zeros of the Jost Function for = 0.- 2.3 The S-Matrix in a Two-Pole Approximation.- 2.4 The Case of 0 and Perturbation Theory for a Bound State Close to the Continuum.- 2.5 Trajectories of the Poles of the S-Matrix in the Case of ZRP and Separable Potentials.- 3 Zero-Range Potentials for Molecular Systems. Bound States.- 3.1 Many-Center Problems without External Fields.- 3.2 Potential Curves for a Two-Center System and Some Applications.- 3.3 Analytic Properties of the Potential Curves and Trajectories of the Poles of the S-Matrix.- 3.4 Perturbation Theory in the Presence of an External Electric Field.- 3.5 Perturbation Theory in the Presence of an External Magnetic Field.- 3.6 Solution of the Schr¿dinger Equation with the Help of ZRPs.- 4 Scattering by a System of Zero-Range Potentials and the Partial Wave Method for a Nonspherical Scatterer.- 4.1 The Partial Wave Method.- 4.2 Behavior of the Phases at Low Energy.- 4.3 The Variational Principle.- 4.4 Scattering by a System of ZRPs.- 4.5 ZRPs in the Theory of Multiple Scattering.- 5 Zero-Range Potentials in Multi-Channel Problems.- 5.1 Zero-Range Potentials for a Many-Component Wavefunction.- 5.2 Singlet-Triplet Splitting and Cross Sections for Elastic and Inelastic Scattering.- 5.3 Energy Terms of the e + H2 System and Trajectories of the Poles of the S-Matrix for a Two-Channel Problem.- 5.4 Electron Scattering by Molecules in the Separable Potential Approximation.- 6 Motion of a Particle in a Periodic Field of Zero-Range Potentials.- 6.1 One-Dimensional Lattice in a Three-Dimensional Space. Bound States.- 6.2 Electron Scattering by Long Linear Molecules.- 6.3 Two-Dimensional Lattice in Three-Dimensional Space.- 6.4 Three-Dimensional Lattice and the Method of Ewald.- 7 Weakly Bound Systems in Electric and Magnetic Fields.- 7.1 Weakly Bound Systems in a Homogeneous Electric Field.- 7.2 Weakly Bound Systems in a Homogeneous Magnetic Field.- 7.3 Weakly Bound Systems in Crossed Electric and Magnetic Fields.- 7.4 A Combination of ZRPs and a Coulomb Field.- 8 Electron Detachment in Slow Collisions Between a Negative Ion and an Atom.- 8.1 ZRPs in Time-Dependent Quantum Mechanical Problems.- 8.2 Linear Approximation in Detachment Theory.- 8.3 Account of the Finite Size of the Colliding System.- 8.4 Production of Negative Ions in Three-Body Collisions.- 9 Time-Dependent Quantum Mechanical Problems Solvable by Contour Integration.- 9.1 General Time-Dependent Problems Solvable by Contour Integration.- 9.2 Adiabatic Approximation and Trajectories of the Poles of the S-Matrix.- 9.3 Ionization in Slow Atomic Collisions.- 10 Nonlinear Approximations in the Theory of Electron Detachment.- 10.1 Nonlinear Problems Solvable by Contour Integration. Sudden Approximation.- 10.2 Quadratic Approximation in the Theory of Electron Detachment.- 10.3 Quadratic Approximation (General Case).- 11 Time-Independent Quantum Mechanical Problems.- 11.1 Account of the Quantal Motion of the Nuclei in Detachment Theory.- 11.2 Time-Independent Quantum Mechanical Problems Solvable by Contour Integration.- References. Seller Inventory # 9781468454536
Quantity: 1 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 574. Seller Inventory # C9781468454536
Quantity: Over 20 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 300. Seller Inventory # 26358306801
Quantity: 4 available